💫Nuevo!! Universo Mágico ha creado una Sala de Chat para que puedas conversar en tiempo real.

💫Si eres Autor prueba la opción Nueva Entrada. Utiliza Chrome para ver el blog completo.

💫
Los aficionados ya pueden escribir sobre astronomía. Date de alta como
Autor en Universo Mágico Público.

💫Comunidades de Astronomía en Google Plus: Universo Mágico - Astronomy Lab - Space Roads - Space World - Astronomy Station

💫Grupos de Astronomía en Facebook: Astronomy & Space Exploration - Universo Mágico
- Big Bang - Galicia Astronómica

💫The LMC HII region N214C


Using ESO's 3.5-m New Technology telescope (NTT) located at La Silla (Chile) and the SuSI2 and EMMI instruments, astronomers from France and the USA [3] studied in great depth this unusual region by taking the highest resolution images so far as well as a series of spectra of the most prominent objects present. N214C is a complex of ionised hot gas, a so-called H II region [4], spreading over 170 by 125 light-years. At the centre of the nebula lies Sk-71 51, the region's brightest and hottest star. At a distance of ~12 light-years north of Sk-71 51 runs a long arc of highly compressed gas created by the strong stellar wind of the star. There are a dozen less bright stars scattered across the nebula and mainly around Sk-71 51. Moreover, several fine, filamentary structures and fine pillars are visible.

The green colour in the composite image, which covers the bulk of the N214C region, comes from doubly ionised oxygen atoms [5] and indicates that the nebula must be extremely hot over a very large extent. The central and brightest object is not a single star but a small, compact cluster of stars. In order to study this very tight cluster in great detail, the astronomers used sophisticated image-sharpening software to produce high-resolution images on which precise brightness and positional measurements could then be performed. This so-called "deconvolution" technique makes it possible to visualize this complex system much better, leading to the conclusion that the tight core of the Sk-71 51 cluster, covering a ~ 4 arc seconds area, is made up of at least 6 components.

From additional spectra taken with EMMI (ESO Multi-Mode Instrument), the brightest component is found to belong to the rare class of very massive stars of spectral type O2 V((f*)). The astronomers derive a mass of ~80 solar masses for this object but it might well be that this is a multiple system, in which case, each component would be less massive. A remarkable feature of N214C is the presence of a globular blob of hot and ionised gas at ~ 60 arc seconds (~ 50 light-years in projection) north of Sk-71 51. It appears as a sphere about four light-years across, split into two lobes by a dust lane which runs along an almost north-south direction. The blob seems to be placed on a ridge of ionised gas that follows the structure of the blob, implying a possible interaction.

Credit:
ESO


Visit: 
Australia Science (Google Plus) 
Astronomy Station (Google Plus) 

Publicar un comentario