💫Nuevo!! Nuevos enlaces a los Buscadores más utilizados, en un desplegable de la barra lateral. Accede directamente a Google, Wikipedia, etc.

💫Ahora ya puedes recibir las entradas en tu Email, suscríbete en la barra lateral.

💫Si eres Autor prueba la opción Nueva Entrada. Utiliza Chrome para ver el blog completo.

💫Los aficionados ya pueden escribir sobre astronomía. Date de alta como Autor en Universo Mágico Público.

💫Comunidades de Astronomía en Google Plus: Universo Mágico - Astronomy Lab - Space Roads - Space World - Astronomy Station

💫Grupos de Astronomía en Facebook: Astronomy & Space Exploration - Universo Mágico - Big Bang - Galicia Astronómica

💫The area around NGC 6503

Communities & Groups:     (New)  Space World Google+        Big Bang Facebook


This image shows the area around galaxy NGC 6503. The galaxy, which lies about 18 000 000 light-years away is at the edge of a strangely empty patch of space called the Local Void. NGC 6503 is only some 18 million light-years away from us in the constellation of Draco (The Dragon), making it one of the closest neighbours from our Local Group. It spans some 30 000 light-years, about a third of the size of the Milky Way. The galaxy’s lonely location led stargazer Stephen James O'Meara to dub it the “Lost-In-Space galaxy” in his 2007 book Hidden Treasures [1]. This galaxy does not just offer poetic inspiration; it is also the subject of ongoing research. The Hubble Legacy ExtraGalactic UV Survey (LEGUS) is exploring a sample of nearby galaxies, including NGC 6503, to study their shape, internal structure, and the properties and behaviour of their stars. This survey uses 154 orbits of time on Hubble; by contrast, a typical Hubble observing programme lasts from a few to a few tens of orbits.



 The Local Void is a patch of space thought to be about 150 million light-years across that seems to be curiously devoid of galaxies. Astronomers using Hubble discovered that the emptiness of this region has quite an effect on the space around us, the Milky Way is being strongly pulled away from it by the gentle but relentless tug of other nearby galaxies. As they stream away from one another at high speeds, supersonic shock fronts develop along the jets and heat the surrounding gas to thousands of degrees. Furthermore, as the jets collide with the surrounding gas and dust and clear vast spaces, they create curved shock waves. These shockwaves are the hallmarks of Herbig-Haro (HH) objects, tangled, knotted clumps of nebulosity. The prominent Herbig-Haro object shown in this image is HH 24.


Just to the right of the cloaked star, a couple of bright points of light can be seen. These are young stars peeking through and showing off their own faint lightsabres. One hidden, cloaked source, only detectable in the radio part of the spectrum, has blasted a tunnel through the dark cloud in the upper left of the image with a wider outflow resembling “force lightning”. All these jets make HH 24 the densest concentration of HH jets known in such a small region. Half of the HH jets have been spotted in this region in visible light, and about the same number in the infrared. Hubble’s observations for this image were performed in infrared light, which enabled the telescope to pierce through the gas and dust cocooning the newly-forming stars and capture a clear view of the HH objects that astronomers are looking for.

Credit: NASA, ESA, Digitized Sky Survey 2 (Acknowledgement: Davide De Martin)


Communities & Groups:     (New)  Space World Google+        Big Bang Facebook

Publicar un comentario